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Course Learning Outcomes (CLOs): After completing this course successfully,
the students will be able to-

CLO1

CLO?2

CLO3

CLO4

CLOS5

CLOG6

Defining and applying the concept of Mach number to differentiate between subsonic, sonic, and
supersonic flows.
Calculating changes in flow properties through isentropic processes (no friction or heat transfer).

Analyzing oblique shock waves and their interaction

Exploring the effects of high-temperature gas flows and real gas properties

Utilizing computational fluid dynamics (CFD) techniques to simulate complex gas flow

Identifying the governing equations for compressible flow, including conservation of mass,
momentum, and energy



SL Content of Course Hrs CLOs

1 One dimensional flow with area change, friction, and heat transfer. 8 CLO1

) Flow in converging-diverging nozzles; Governing compressible flow equations, g CLO3 CLOA
Transonic flow; Stationary, detached and moving shocks. '
Generation of shocks over wedge and its expansion; supersonic and hypersonic

3 9 CLO2, CLO6
flows.

4 |Shock interaction in supersonic flows. 9 CLOS5, CLO6

Text Book:
1.Fundamentals of Gas Dynamics, 3rd Edition, Robert D. Zucker, Oscar Biblarz.
P. Balachandran, —Fundamentals of Compressible fluid dynamics||, PHI Learning, New Delhi




Course plan specifying content, CLOs, teaching learning and assessment strategy mapped with CLOs

Week Topic Teaching-Learning Strategy Assessment Strategy Corresponding CLOs
1 Introduction, Definition of Quality, Methods of control chance causes and Lecture, discussion, group work Quiz, Written Exam
assignable causes, CLo1
2 causes,Seven statistisfial tools ,problem solving methodology ( PDCA ) Oral Presentation, debate Assignment, Written, Quiz cLo1
3 seven management Tools ,SQC Benefits and limitations, Quality function Video lecture, Field visit Report writing, Demonstration
CLO1
4 Quality assurance,Quality audit, Quality cost, Quality circle, Team of Quality Lecture Viva, Quiz
circle,Benefits CLOL, CLO3
5 Theory of Control Charts, control chart for variables X & R Chart, Standard Project exhibition Project, Field visit
deviationchart CLO1
6 Process capability studies Control Chart for attributes, fraction defective and of Discussion, Video Presentation Quiz, Written Exam
defective charts chart cLo1
7 sensitivity Control chart for non conformities ( p, np chart, c &u charts ) problems Case-based Learning, Assignment, Written, Quiz
using SQC tables Demonstration CLO1, CLO4
8 Acceptance sampling, Fundamental concepts & terms ,Operation characteristic Lecture, discussion, group work | Report writing, Demonstration
curves(OC curves) AQL CLO3,CLO4
9 LTPD, AOQL, sampling plans for single ,Double Multiple sampling plan,sequential Oral Presentation, debate Viva, Quiz
sampling plan, CLO2
10 Dodge Roming sampling plans Lot by Lotacceptance sampling by Attributes Video lecture Project, Field visit CLO?
11 ,AQL system for Lot by Lot sampling,Acceptancesampling by variables. Lecture uiz, Written Exam
QL sy: y pling p pling by Q CLO3, CLO4
12 Quality policy, Quality planning, designing for quality, Manufacturing for quality Project exhibition Assignment, Written, Quiz
CLO3,CLO3
13 quality philosophies by Deming and Jurang, Crosby & Muller,TQM Discussion, Video Presentation Report writing, Demonstration
definition,customer focus CLO1
14 Top Management commitment, Team work, Case-based Learning, Viva, Quiz
Demonstration CLO1
15 Implementation of TQM,Concepts of Kaizen, 5S, Lecture, discussion, group work Project, Field visit
CLO3, CLO4
16 just in time JIT, Taguchi methods, ; Oral Presentation, debate Quiz, Written Exam
CLO3, CLO4
17 need for ISO 9000, clausesof ISO 9000 Implementation,Case studies Video lecture Assignment, Written, Quiz

CLO3, CLO4




Introduction

— Substance capable of flowing.
Eg: Liquid, gases and vapour
Fluid Statics
— The study of fluid at rest.
Fluid Kinematics
— The study of fluid in motion without considering

the pressure.
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Introduction

— The study of fluid in motion where pressure force

is considered.
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Gas Dynamics

Compressible fluid dynamics — Gas dynamics
Gas dynamics — The branch of fluid dynamics which is concerned

with the causes and effect arising from the

motion of compressible flow.
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Gas Dynamics

Application
- Used in steam and gas turbines.
- High speed aerodynamics.
- High speed turbo compressors.
- Jet, rocket and missile propulsion system.

- Transonic, supersonic and hypersonic flows.
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Fundamental laws

Steady flow energy equation — first law of thermodynamics
Entropy relations — second law of thermodynamics
Continuity equation — law of conservation of mass

Momentum equation — Newton’s second law of motion
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Basic Definitions

System
— An arbitrary collection of matter which has a fixed
identity.
Surrounding
— Anything outside the system.
Boundary
— Imaginary surface which separate the system from its

surroundings
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Basic Definitions

Closed system
— There is no mass transfer between the system into the
surroundings but energy (or) heat transfer takes place.
Open system
— Both energy and mass transfer takes place from the
system into the surroundings.
Isolated system
— if there is no mass transfer and energy transfer to

and from the system
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Basic Definitions

State
— Each and every condition of the system.
Process
— A change or a serious of change in the state of the
system.
Cycle

— The series of processes whose end state are identical.
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Basic Definitions

Property
— An observable characteristics of the system.
Intensive property
— The property which is independent on mass of the
system.
Eg. pressure, temperature, density, viscosity
Extensive property
— The property which depends on the mass of the system.

Eg. Volume, enthalpy, work done
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Basic Definitions

Pressure — the normal force per unit area. Sl unit N/m?2.
1 N/m?= 1 Pascal =1Pa
1 bar = 10° N/m?
1 atm =1.01325 bar
1 atm = 760 mm of Hg
1 atm = 10.336 m of water column

Temperature — when two system are in contact with each other
and are in thermal equilibrium, the property common to both the
systems having the same value is called temperature.

1°C = 14273 K
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Basic Definitions

Density — the mass of the substance per unit volume.
- Sl unit Kg/m?.
Work — It is an energy which is the product of force and the
distance travelled in the direction of force.
- it is path function not a property.

- Unit N.m (or) Joule.
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Basic Definitions

Specific heat — the amount of heat that required to rise the
temperature of unit mass of substance by one degree.
Specific heat capacity at constant volume (C,)

- if temperature rise occurs at constant volume
Specific heat capacity at constant pressure(C,)

- if temperature rise occurs at constant pressure
The characteristic gas constant

B =€, €,
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Basic Definitions

The characteristic gas constant
R=C,—C,

Divide throughout by C,

R C 1
£e1-ge()

Cp (S 14
.= (5)
Cp 4
YR
C.. =
Py —1)
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Basic Definitions

Adiabatic process
— During a process if there is no heat transfer between the
system and the surroundings.
— Rotodynamic machines (or) turbo machines assumed to

followed only adiabatic process.
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Basic Definitions

Isentropic process — in which there is no change in entropy, such

process is a reversible adiabatic process or isentropic process.

This is governed by the following relations:

pvY = constant
yud

-0
Ty P1 P1 V2

dp
Tds=dh—vdp=dh—;—
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Types of Flow

Steady and unsteady flow
Uniform and non-uniform flow

Laminar and turbulent flow

Compressible and incompressible flow

Rotational and irroational flow

One dimensional, two dimensional and three dimensional
flow

S NN SSNK
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Steady & Unsteady flow

v' Steady flow is that type of flow, in which the fluid
characteristics like velocity, pressure and density at

a point do not change with time.

v' Unsteady flow is that type of flow, in which the fluid
characteristics like velocity, pressure and density at a

point changes with respect to time.
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}Jniform & Non - Uniform

v Uniform flow, in which velocity of fluid particles at all
sections are equal.

v" Non — uniform flow, in which velocity of fluid particles
at all sections are not equal.
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Laminar & Turbulent Flow

v' Laminar flow or stream line flow, the fluid moves in
layers and each particle follows a smooth and

continuous path.

v' Turbulent flow, the fluid particles move in very
irregular path
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¥Com__pressible & Incompressible Flow

v Compressible flow in which density of fluid changes
from point to point (Gases, Vapours). (M>0.3)

v' Incompressible flow in which density of fluid is
constant (Liquids). (M<0.3)

Mach Number = Flow velocity/Velocity of sound

c
M=-—
a
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Rotational & Irrotational flow

v

Rotational flow in which the fluid particles flowing
along stream lines and also rotate about their own
axis.

Irrotational flow in which the fluid particles flowing

along stream lines but don’t rotate about their own
axis (without turbulences, whirlpool, vortices, etc.,).
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1-D, 2-D & 3-D Flow

v" 1-D flow, in which the flow parameter such as velocity is a
function of time and one space co-ordinate (x) only (stream
lines - straight line).

v' 2-D flow, in which the flow parameter such as velocity is a
function of time and two space co-ordinate (x, y) only

v 3-D flow, in which the flow parameter such as velocity is a

function of time and three mutual perpendicular axis (X, Y,

z) only.
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Energy equation

The first law of thermodynamics state that, when a system execute a
cyclic process, the algebraic sum of work transfer is proportional to

the algebraic sum of heat transfer.

fdw ocfdo
faw =) o

When heat and work terms are expressed in the same units
de — fdQ =0
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Energy equation

The quantities ‘dQ’ and ‘dW’ will follow the path function, but the quantity
(dQ-dW) does not depands on the path of the process. Therefore the

change in quantity (dQ-dW) is a property called Energy (E).
dE =dQ — dW

2 2 2
!dE=lfdQ—1de

(EZ-E1)=Q-W

Q=W+ (E,—E) ... (i)
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Energy equation

In the above equation ‘E’ may includes kinetic energy, internal energy,

gravitational potential energy, strain energy, magnetic energy eftc.,

By ignoring magnetic energy and strain energy term ‘E’ written as

1
= —mcl e
E—U+ng+2mc ..... (ii)
The differential form of eqn. (ii) is
1
dE = dU + mgZ + md(—icz)

Integrating the above eqn.
2 2 2 1 2
dezde+mgde+§mfd(cz)
1 1 1 1
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Energy equation

1
o _ _ L. 2 _ 2
Ey — By = (U = Uy) + mg(Zz = Z1) + 5m(cj — cf) (ii)

Substituting eqgn. (iii) in (i)
1
Q=W+ U, —Uy) +mg(Z; —Z1) + m(Cz ~€E)  ommme (iv)
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Energy equation for a flow process:

A change or a series of changes in an open system is known as

“flow process”

Eg:
I. Flow through nozzles, diffusers and duct etc.,
ii.Expansion of steam and gases in turbines
lii.Compression of air and gases in turbo compressor etc.,

In such flow processes the work term (W) includes flow work also

W =Ws+ (pVo — p1V1)

Where, W, = Shaft work ; (p,V,-p1V4) = Flow work
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Energy equation for a flow process:

Substituting egn. (iv) in (v)

1
Q=Ws+ (p2Vo —p1Vh) + (U —Uy) + mg(Z,— Z;) + Em(‘—'z2 —cf)

]
Q=W +(U,+ pv,)—(U, + pyv,)+mg(Z, —Z,)+§m(c§ —c;)

But, we know that H=U+pV

1
O=W, +(H,-H)+mg(Z,~Z)+om(c=¢) ”
1 1 i
hy + 9Z, +§mcf+q=hz+gzz +§mc§+ws ..... (vii)
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Energy equation for a flow process:

1
mC12+q=h2+gZZ+—

1
h.1 +ng+— 2

5 me2+ws | e (vii)

Where,

hy, h,= Enthalpy of flowing fluid at inlet and outlet
Z,,Z,= Datum heads at inlet and outlet
¢q, ¢ = Fluid velocity at inlet and outlet

q = Heat flow in the system
= Shaft work in the system

Equation (vii) is a steady flow energy equation per unit Kg

mass.
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Adiabatic energy equation:

v

Compared to other quantities, the change in elevation g(Z,-Z,) is
negligible in flow problems of gases and vapours.

In a reversible adiabatic process the heat transfer ‘q’ is negligibly
small and can be ignored.

Expansion of gases and vapours in nozzles and diffusers are

example for this process.

For this process eqn.(vii) reduced to
2 2
G €2
ht-=h+>| (viii)
[Ws = 0]
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Adiabatic energy transfer and energy
transformation:

Adiabatic energy transfer:

shaft work will present in an adiabatic energy transfer process

¢

C2
1

+ wg

Example:
I. Expansion of gases in turbines

li.Compression of gases in compressor
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Adiabatic energy transfer and energy
transformation:

Adiabatic energy transformation:

In adiabatic energy transformation process the shaft work is
zero.
2 2
i c
Mt =h+-> (x)
Example:
I. Expansion of gases in nozzle

ii.Compression of gases in diffuser
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Stagnation state and stagnation
properties:

Stagnation state:

v' The state of a fluid attained by isentropically decelerating it to zero

velocity at zero elevation is referred to as stagnation state.

v The properties of fluid at stagnation state are the stagnation

properties of the fluid.

v EQ: stagnation temperature, stagnation pressure, stagnation

enthalpy, stagnation density
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Stagnation enthalpy [h,]:

Stagnation enthalpy of a gas or vapour is its enthalpy when it
Is adiabatically decelerated to zero velocity at zero elevation.
As the definition,

At the initial state hy =h:¢c, =¢

At the final state h, = h, :¢c, =0

Substituting the egn. (x),

Where, h,=Stagnation enthalpy and h = static enthalpy
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Stagnation temperature [T,]:

Stagnation temperature of a gas or vapour is defined as
temperature when it is adiabatically decelerated to zero velocity at zero
elevation.

for perfect gas, eqgn (xi) can be written as,
2

[
CpTo = CpT+

Divide the equation throughout by C,

2
C

STy =T+ . e (xii)

P
Where, T, = Sagnation temperature

I'= Static temperature

2

% =Velocity temperature
p
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Stagnation temperature [T,]:

To_1+ c*

P 2C,T .
To £ [p—(y—l)
Fel—

T 2(y_1)RT

To_,, =1 ¢ [a = \/yRT]
T 2 a?

T, . (=1 M=
fo — M2 T a
ZElE=——M

7"0 (}'"1) 2

Tlt———M (xiii)
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Stagnation pressure[P]:

Stagnation temperature is the pressure of gas when it is
adiabatically decelerated to zero velocity at zero elevation.
for perfect gas, the adiabatic reaction is

(y-1)
Ig_(fg) Y
T \P
P

P

Fo
P
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Stagnation velocity of sound [a,]:

we know that the acoustic velocity of sound

a = \/YRT

For the given value of stagnation temperature the stagnation velocity of

sound

a, =+ YRT,
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Stagnation density [p,]:

For the given value of stagnation pressure and temperature the stagnation
density is given by
Po

Po

From adiabatic relation
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Various regions of flow:

Mach Number Flow Regimes

Sub-  Tran-
Sonic  Sonic
Flow Flow

Hyper- Hyper-
Sonic Velocity
Flow Flow

Incompressible
Flow

0.1 0.3 1 5 10 20

Mach Number
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Various regions of flow:

Incompressible limit

a a /M=o_f//Subsonic

Supersonic

Hypersonic

Ow
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Various regions of flow:

The adiabatic energy equation for a perfect gas is derived in terms of fluid

velocity (c) and sound velocity (a).

Form adiabatic energy equation
2

h, = h + % = constant = ..... (i)
We know that,
h=C,T = s RT i
B -1 i ~ 1)
By substitution this in equation (i)
ho = (ya—z D +c22 = constant v (it)

At T=0; h=0; a=0 and c=c,
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Various regions of flow:

Therefore equation (ii) becomes

2

i s c";‘x ..... (iii)
At c=0; a=a,
Therefore, form equation (iii)
h, = % = constant :
(y=1) T e (iv)
a? ¢F el a?

h, = = = constant | ..... (v)

“o-DTZ" 2 " G-D
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Various regions of flow:

M < 0.3 — Incompressible flow region
0.3 <M <0.8 — Subsonic flow region

0.8 <M < 1.2 — Transonic flow region
1.2 <M < 5 — super sonic flow region

5 < M — Hypersonic flow region
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Acoustic velocity (or)

Sound velocity:

Wave front — a plane cross

which pressure and
density changes suddenly
be

discontinuity in pressure,

and there will

temperature and density.

Piston

s

Weak pressure wave (moving)

p+dp
P

\-

fa

-~

Compressed medium Stationary medium

qiﬁgpp
i N

Piston path

Path of pressure wave

v

dv

(a)

X

Moving Wave
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Piston

-

Weak pressure wave {stationary)

=

a pp

-

p+dp i
ptdp |

a—dV/

I 4

-

/ .
Compressed medium | Stationary medium

.. Path of gas moving at'q

Path of gas moving st "g@ —dV’

P4 X
p+dp ;
. -
' P
s l *
X
a-dV \;k—a

A

r

(b)
Stationary Wave
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Acoustic velocity (or) Sound velocity:

v If small impulse is given to the piston the gas immediately adjacent to

the piston will experience a slight rise in pressure (dp) or in other

word it Is compressed.
v" The change in (dp) takes place because the gas is compressible and
therefore, there is lapse of time between the motion of the piston and

the time this is observed at the far end of the tube.

v Thus it will take certain time to reach far end of the tube or in other

words there is finite velocity of propagation which is acoustic velocity.
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Acoustic velocity (or) Sound velocity:

v" In this case the segment gas at pressure p on the right side moving
with velocity ‘a’ toward left and thus its pressure is raised to (p+dp)
and its velocity lowered to (a-dc).

v This because of the velocity of piston acts opposite to the movement
of gas.

Before deriving following assumption made:

1. The fluid velocity is assumed to be acoustic velocity.

2. There is no heat transfer in the pipe and the flow is through a
constant area pipe.

3. The change across an infinitesimal pressure wave can be assumed

as reversible adiabatic (or) isentropic.
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SOUND - PRODUCTION AND PROPAGATION OF SOUND
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Acoustic velocity (or) Sound velocity:
pA — (p + dp)A = m[(a — dc) — a]

l l

Pressure force Impulse force

[1.n = pAa]

Alp —p —dp] = pAala — dc - a] [ A = constant]

s —dp = —padc

sdp=padc  ..... (i)

From continuity equation for the two sides of the wave
m = pAa = (p + dp)A(a — dc)

pa = pa+ adp — pdc —dpdc ..... (ii)
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Acoustic velocity (or) Sound velocity:

The product of dp dc is very small, hence it is ignored. The eqn (ii)

becomes
adp = pdc
Substituting this in equation (i), we get
dp = a*dp
dp y
a= % ..... (iii)

For an isentropic flow,
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Acoustic velocity (or) Sound velocity:

P _

pp~ Y = constant
Differentiating above equation

pl=yp™"'dp] + p~(dp) = 0

—pyp™Y X p~ldp+p7Vdp =0

dp=y—5-xdp

[p = pRT]
d_p=y£ P=p
e o
dp
%—}’RT
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Acoustic velocity (or) Sound velocity:

Substitution this in equation (iii)

\/7 JERT |  sesww (iv)

The velocity of sound in normal ambient temperature is about 340 m/s.
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Mach-like gravity-capillary wakes

Frédeéric Moisy, Marc Rabaud

Université Paris-Sud, CNRS, Laboratoire FAST

Physical Review E 90, 023009 (2014)
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Mach angle and Mach cone

Incompressible flow

c) Sonic flow

g\\e“c’e Z d
8 .
Action ”e"ce
M M>1

(d)

)

b) Subsonic flow
)
)

Supersonic flow

Silence
Action

emitted at 2s (@ M<1 a
M=0
(a) (b)
=1
(©)

SKCET / MECH / GAS DYNAMICS AND JET PROPULSION



Mach angle

Mach =M > 1.0
Speed of Sound = a Mach Angle
Velocity = v

sina =

sina =

2|,_. <R

gL
M

Mach angle | @ = sin
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Maximum velocity of fluid, C .,

From adiabatic energy equation

CZ
ho=h+7

It has two components one is enthalpy (h) and the another is kinetic

2
energy % . When the static enthalpy is zero (or) when the entire energy

is mad up of kinetic energy only the above equation becomes

h=0 and C = Cmax

CZ
Ciax _ 2 hy = r;ax
Ao (y—1)
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Maximum velocity of fluid, C,,,

2
Cmax = Q(y - 1) Ao

Crax 2
Ao \ (y—1)
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Crocco Number, [C]

Crocco number is a non-dimensional fluid velocity which is defined as

the ratio of fluid velocity to its maximum fluid velocity.

c
Co =
r Cmax

2c?

M= ——

A-c¢Hy-1)
To_ 1
T 1-c?
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Practical matters:

This course:

Lectures on Wednesday,

HG01.028; 15.30-17.30;

Assignment course (werkcollege): when and
where to be determined;

Lecture Notes and PowerPoint slides on:
www.astro.ru.nl/~achterb/Gasdynamica_2013



verview

What will we treat du@'ng this course?

- Equa’rlon of moh?'
- Mass conservation™

- Equation of state. = _

 Fundamental processes in agas
- Steady Flows

- Self-gravitating gas

- Wave phenomena

- Shocks and Explosions

- Instabilities: Jeans' Instability



D

Ispthermal sphere &
ular Clusters

Special flows and drag forces

Solar & Stellar Winds

Shocks

Point Explosions,
Blast waves &
Supernova Remnants




« SCALE
STRUCTURE




Classical Mechanics vs. Fluid Mechanics

Single-particle (classical)
Mechanics

Fluid Mechanics

Deals with single particles
with a fixed mass

Deals with a continuum
with a variable mass-density

Calculates a single particle
trajectory

Calculates a collection of
flow lines (flow field) in space

Uses a position vector and
velocity vector

Uses a fields :
Mass density, velocity field....

Deals only with externally applied

forces (e.g. gravity, friction etc)

Deals with internal AND
external forces

Is formally linear (so: there is a
superposition principle for
solutions)

Is intrinsically non-linear
No superposition principle in
general!




Basic Definitions

Small volume AV

4y

>V,

Fluid description

Molecular description



Mass, mass-density and velocity

Small volume AV v , .
e — Mass density p:
Am
e )= dmy Ay
Fluid description
Molecular description
Am = > My
Mass Am in volume AV Lo in AV
: Yy msaV
Mean velocity V(x, 1) V = Zain AV e
is defined as: Am




Equation of Motion: from Newton to
Navier-Stokes/Euler

dV,
e E: 1705

m
« dt o A

A

Particle a V(T)

Single-particle dynamics Fluid dynamics



Equation of Motion: from Newton to
Navier-Stokes/Euler

You have to work with a

velocity field that depends
on position and timel

V:(‘/x»‘/ya‘/z):v(mat)

Fluid dynamics



Derivatives, derivatives...

Eulerian change: 50 = Q(z, t + At) — Q(z , t) =~ [%Q At



Derivatives, derivatives...

Eulerian change:  §5Q = Q(z, t + At) — Q(z , t) ~ oQ At

evaluated at a ot
fixed position

Lagrangian change: AQ = Q(a + Az, ¢+ Af) — Q(a, £) ~ 9° At

evaluated at a di
shifting position /

Shift along N
streamline: Az =V At




Comoving derivative d/dt

AQ = Qt+ AL, z+ Azx) — Q(t, =)
~ (())Q._M (Azx - V)Q
_ [99
= _01‘_+ (V- V)Q]At
s ((lQ) e
\ dt







Notation: working with the gradient

operator

Gradient operator is a
‘machine’ that converts
a scalar into a vector:

Related operators:
turn scalar into scalar,
vector into vector....

o o0 0 )

V:( .5
dr 0Oy 0z,

For scalar Q(zx , 1):

0Q . 00Q ., 0Q .

= ox w Ay b 0z =
0 0 0
Ax - V=Arx —+ Ay — + Az -
Ox 4 dy 0z
0 0 0

V.V=V V.——+V,
"0z H dy ¥ 0z



GRADIENT OPERATOR AND

VECTOR ANALYSIS (See Appendix A)

scalar into vector: g=-N @

vector into scalar: N eg=—-47Gp

: ~ 4r

vector into vector: N xB=—
c

tensor into vector: N eT=—f

Useful relations: N oN xB)=0, NxNO=0,N ¢N®)=V°D



Program for uncovering the basic equations:

1. Define the fluid acceleration and formulate

the equation of motion by analogy with
single particle dynamics;

2. ldentify the forces, such as pressure force;

3. Find equations that describe the response of
the other fluid properties (such as: density [,
pressure P, temperature 7) to the flow.



Equation of motion for a fluid:

dV oV
P =P 5 + (V- -V)V|=Ff




Equation of motion for a fluid:

dV BV

The acceleration of a fluid element
is defined as:

dV :a—V+(V N WV
dr o




Equation of motion for a fluid:

dV 6‘V

This equation states:

mass density x acceleration = force density

note: GENERALLY THERE IS NO
FIXED MASS IN FLUID MECHANICS!




Equation of motion for a fluid:

Non-linear term!

Makes 1t much more difficult
To find *simple’ solutions.

Prize you pay for working with

a velocity-field




Equation of motion for a fluid:

S\ ) %

pE: W-l‘(VV)V]:f
|

Non-linear term! Force-density

Makes 1t much more difficult This force densitycan be:
To find “simple’ solutions. * internal:
- pressure force

Prize you pay for working with - viscosity (friction)

a velocity-field - self-gravity
» external
- For instance: external
gravitational force




Pressure force and thermal motions

Individual particle:

Split velocities into the
average velocity Os= V(2 t)t+osl; t] .

el Average properties of random velocity o:
and an
isotropically distributed
deviation from average,

the (7
random velocity:

oc=9—-V =0_:

~ o
|
Q
|
Q
o
|
Q

Ll ()

and
040y =050, =0,0, =---=0.

olx, t)




DISTRIBUTION OF RANDOM VELOCITIES ALONG

THE THREE COORDINATE AXES

A # particles A # particles

/I # particles
\

0

Oy

isotropic case: three distributions identical

——————— anisotropic case: three distributions differ



Mean velocity V Vv

0

Galilei-
transformation

Fluid description

Molecular description



Acceleration of particle o

dv,

dt

v,

(.){' (vu 'V)'U”

NV + o, - .

o ma) (V+0o4)V)(V+0o4,)

ok Sack (V- V)ooft(on- V)oa

total derivative mean flow

linear in O

quadratic in O




Acceleration of particle o (II)

Effect of average over many particles in small volume:

dv v
= + (v V)v
dt ot ( )
oV 0
- 2 (V- VIV +|(, +HV-V))ol (@ Vo
Ot | i ot -~ e
e ~- < | |remains: quadratic in O
total derivative mean flow vanishes: & =0!




Average equation of motion:

ﬂ((.?fv+(V~V)V)= I —p(o-V)o

mean ext. force |

|

For isotropic fluid: p(o-V)o) =V ('D?) = VP




Some tensor algebra:

veCTor' A — ‘4‘, €; = 14_,' € . A]/e'z o "4i €3 = ‘4!/

Three notations for the same animall



Some tensor algebra:

the divergence of a vector in cartesian
(x, v, z) coordinates

Vector A=A e =A,e + Ayez + A, e3 = Ay

0A; O0A, O0A, O0A,
Scalar = dzr; Oz % oy T 82




Rank 2 Tensor

Rank 2
tensor

I'=1je Qe ==

/Tr;r Try Trz \

Tye Tyy 1y

T B



Rank 2 Tensor and Tensor Divergence

( TI‘I Tlfy Tl.‘: \

Rank 2 -
TZT}'G,'@B':: ZI fru T‘u
tYensor T ‘ k d =

\T.:.r T:y T::/

( (Y]Lri ()TJJ ()1 zr \
oz T oy T GE

T, -
veclror' V . T — ( 1_/) e} — 0(€;£/ (g};u + ()T U

()l

T, vz 4

dT
\ ()‘IL T Oy



Special case:

Dyadic Tensor = Direct Product of two Vectors

(AJ'B.I‘ A.I‘By A;I‘B:\

A X B = A,'Bj €; X €; = /lyB_,- A!/By AyB:

\ A,B, A,B, A,B,

V-(AQB)=(V-A)B+(A-V)B

This is the product rule for differentiation!




Application: Pressure Force (I)

Tensor

divergence: (po-V)o=V-(po®ac)—(V-(po)) o

>

Isotropy of the
random velocities:

Second term = scalar x vector!

This must vanish upon averaging!!



Application: Pressure Force (II)

Isotropy of the

random velocities

[ 3
3

o’ wheni=j

0:0; = 302 0;; =
|0 wheni#j
> poRo=p
Diagonal Pressure Tensor

po?



Pressure force, conclusion:

p (W +(V - V)V) = —V P+other (external) forces




Summary:

e We know how to interpret the time-derivative d/d;
e We know what the equation of motion looks like;

e We know where the pressure force comes from
(thermal motions), and how it looks: f=-[IP.

e We still need:

A way to link the pressure to density and
temperature: P = P(L], T);

- A way to calculate how the density [] of the
fluid changes.



What did we learn last time around?

-Equation of motion;

-Relation between pressure
and thermal velocity dispersion;

-Form of the pressure force

9%
P (%f— +(V - V)V) = —V P+other (external) forces

P(x,t)=3p0?




A little thermodynamics:

ideal gas law

Each degree of freedom carries anenergy <k, T

Point particles with mass m:

2 2 |
3 m 3




Alternative way to write this:

PszT
U
k, .
R =—-= universal gas constant;

m : .
(= — = mass in units of mass hydrogen atom.
m
H



Some more thermodynamics

(see Lecture Notes)

Adiabatic change: no energy is irreversibly
lost from the system, or gained by the system

dU+PdV =0




Some more thermodynamics

(see Lecture Notes)

Adiabatic change: no energy is irreversibly

lost from the system, or gained by the system

dU+PdV O

SN

Change in internal
energy U

Work done by pressure forces
in volume change d¢




Gas of structure-less point particles

p) pR T
Thermal W, =n (%ma ) =2nk T =2 ——
energy density: \ ) 7
kinetic energy of
thermal motion

Pressure: P = ﬂ — %\Vﬂ
1 :

1






dU+PdY =0 —— d(3pRTV) (pRT

4 —) v =0

R |
d(f ¢) = (df) g + f (dg) — 5 pdV+VdP =0.



Adiabatic Gas Law: a polytropic relation

Adiabatic pressure change:

P x V*/3 = constant=—

For small volume:
mass conservation!

M = pV = constant —

P p~5/3 = constant




General case for adiabatic changes:

Polytropic gas law: P=Kp’
=2 e

R T

Pt L

Ideal gas law: Ho

. PR T
Thermal energy density: W, =——=
ety T -

Polytropic index

mono-atomic gas: , [ ISOTHERMAL




Mass conservation and the

volume-change law

2D-example:

A fluid filament is deformed
and stretched by the flow;

Its area changes, but the
mass contained in the
filament can NOT change

So: the mass density must
change in response to
X the flow!




Simple one-dimensional flow:

Vix,t)ot
Vix,t) AM(t)=p(x,t) Ax Vix+Ax,t)
> >
p(x,1) p(x+Ax,t)

unit height

S
S
s
&



Vit . |[AM@=p(x.) Ax Vix+Ax,1)
——— —
pt) | 5 prtAny
: S
l —~
|
X x+Ax

left boundary box:  AM. = p(x,1)V (x,t)0t

right boundary box:  AM . = p(x +Ax, 1)V (x + Ax, t)ot



Vix,t)

p(x,1)

Vix,t)ot

g

AM()=p(x,1) Ax Vix+Ax,t)

—
p(x+Ax,1)

unit height

X x+Ax

5(AM) = d(ijw)& =AM, —AM

= p(x,)V(x,t)0t — p(x+ Ax, 1)V (x + Ax,t)ot

%,
0 =0t Ax—( oV
ax(p )



Vix,t)ot

A ey

Vix,t) AM(t)=p(x,t) Ax Vix+Ax,t)
 — E—
p(x,t) p(x+Ax,t)

¥ x+Ax

d(AM
dr

) (0’0) a
ot =0t Ax| — |= =0t Ax—(pV
ot t 8x(p )

<~




Generalization to three dimensions:

,I(\‘l/' 4
""T AM=pAxAyA
op O 0 0
V. ) +—| pV V. 1=0
8t+6x(p i 8y(p )45 (AV.)



Curves, tangent vectors and volumes
carried by flow

| IX
AX = X(£+ A0 — X(0) ~ 00[ Al

t t+At  t+2A1

Curve carried by flow

X
= —V(x=X,t)
dt



= Vigi=X,{)

t t+At  t+2At

Curve eariied by flow

ax - - x10~ o0 SR




t t+At  t+2At

Curve eariied by flow

AX = X(0+Al) — X(0) ~ aa_); Al

d(AX)
dt

— V(X(0)+AX,t) - V(X(0),1)

~ (AX-V)V



RNy BN / . o 6 G s
raiain N Volume: definition
I~ Fiow
-:7 \, Oow ,4//4 o . - - 2. -
i 4 ’ 3 ¥ g ,
\ iy A=AX ,B=AY,C=AZ
- ..-// /
’,f;”' / /
5 -5- =7 7
-
- | AX:: AX, AX,
A

AY =AX - (AY X AZ)=| AY, AY, AY,

AZ, AZ, AZ,

The vectors A, B and C are carried along by the flow!




Volume: definition

‘A=AX,B=AY,C=AZ

AXy AXy; AX,

l— AV=AX - (AY X AZ)=| AY, AY, AY,

AZ, AZ, AZ

dAy  dAX = T
F I B

dAY dAZ
+AX - (T X AZ + AY X T)



Volume: definition

‘Az=AX,B=AY,C=AZ

AXe DX, AX,

l— AV=AX - (AY x AZ)=| AY, AY, AY,
AZ, AZ, AZ,

day  [dax

dt

//ﬁAX-

dt

- (AY X AZ)

dAY

dt

d(AX)
dt

- (AX - V)V

X AZ +AY X

dAZ )
dt

d(AY)
dt

— (AY - V)V




[ AX ) (0 ) (0 ) Special choice:
orthogonal triad

\ 0 ) \ 0 ) \AZ ] AV =AXAY AZ
1A IAX
‘(HV ! =1 (AY X AZ) General

volume-change
law

+AX - (M”Y x AZ +AY X ‘LLZ )
Al (



[ AX ) (0 ) (0 ) Special choice:
, Orthonormal triad
AX = 0 LAY =|AY | , AL =]| O
\ 0 ) \ U ) \AZ ) AV =AXAY AZ
IAY IAX
( =1 . (AY X AZ) General
at | dt
Volume-change
AY 1AZ
+AX - (‘]‘?f x AZ +AY x ° : ) law
At (

oV, /0x 0V,/0x OV,/0x

— A 0 AY 0

AX AY AZ
volumeAY

((‘)V,. )
ox

AZ



Mass conservation and the

continuity equation

dAY

— = AXAYAZ (() AL

Be By Oz

) _AV(V - V) Volume

dt change

Mass conservation: p AV = constant

|

dp  dAV

dmAVL:AV +p
dt

()
dt dt



Mass conservation and the

continuity equation

1A v, oV, JV. ,
O =axaraz (32 +50+ S5 —av(v.v) R
dt dr Oy 02 change
Comoving
Mass conservation: p AV = constant derivative
l (ilz‘—'gt+(v'v)
1(pAY 1 1A ‘
d(pAV) _ pydo dAV
dt dt dt
{ |
dp 0Op 1 dAVY .
W o LR R e e .V
2= BT )p=—p (AV = ) p(V V)



The continuity equation : the behaviour of the

mass-density

1
i)——+(V-V);0:—




The continuity equation : the behaviour of the
mass-density

V- (fA)=f(V-A)+(A-V)f

|

Divergence product rule




The continuity equation : the behaviour of the
mass-density




Summary: we are almost there!

p (dd—‘: +(V - V)V) = —V P+other (external) forces
T 3
P(p, T)=nk,T = p & Pp 5/3 = constant
M
0 |
- +V-.(pV)=0

ot



